Methane (Biogas) from Anaerobic Digesters

Methane (Biogas) from Anaerobic Digesters

Methane, or biogas, can be produced from the digestion of organic material by anaerobic bacteria. This gas can be used for a variety of energy needs.

Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the “natural” gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British Thermal Units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic decomposition of organic materials. It is often found in association with oil and coal.

The same types of anaerobic bacteria that produced natural gas also produce methane today. Anaerobic bacteria are some of the oldest forms of life on earth. They evolved before the photosynthesis of green plants released large quantities of oxygen into the atmosphere. Anaerobic bacteria break down or “digest” organic material in the absence of oxygen and produce “biogas” as a waste product. (Aerobic decomposition, or composting, requires large amounts of oxygen and produces heat.) Anaerobic decomposition occurs naturally in swamps, water-logged soils and rice fields, deep bodies of water, and in the digestive systems of termites and large animals. Anaerobic processes can be managed in a “digester” (an airtight tank) or a covered lagoon (a pond used to store manure) for waste treatment. The primary benefits of anaerobic digestion are nutrient recycling, waste treatment, and odor control. Except in very large systems, biogas production is a highly useful but secondary benefit.

Biogas produced in anaerobic digesters consists of methane (50%-80%), carbon dioxide (20%-50%), and trace levels of other gases such as hydrogen, carbon monoxide, nitrogen, oxygen, and hydrogen sulfide. The relative percentage of these gases in biogas depends on the feed material and management of the process. When burned, a cubic foot (0.028 cubic meters) of biogas yields about 10 Btu (2.52 kcal) of heat energy per percentage of methane composition. For example, biogas composed of 65% methane yields 650 Btu per cubic foot (5,857 kcal/cubic meter).

Digester Designs

Anaerobic digesters are made out of concrete, steel, brick, or plastic. They are shaped like silos, troughs, basins or ponds, and may be placed underground or on the surface. All designs incorporate the same basic components: a pre-mixing area or tank, a digester vessel(s), a system for using the biogas, and a system for distributing or spreading the effluent (the remaining digested material).

There are two basic types of digesters: batch and continuous. Batch-type digesters are the simplest to build. Their operation consists of loading the digester with organic materials and allowing it to digest. The retention time depends on temperature and other factors. Once the digestion is complete, the effluent is removed and the process is repeated.

In a continuous digester, organic material is constantly or regularly fed into the digester. The material moves through the digester either mechanically or by the force of the new feed pushing out digested material. Unlike batch-type digesters, continuous digesters produce biogas without the interruption of loading material and unloading effluent. They may be better suited for large-scale operations. There are three types of continuous digesters: vertical tank systems, horizontal tank or plug-flow systems, and multiple tank systems. Proper design, operation, and maintenance of continuous digesters produce a steady and predictable supply of usable biogas.

Many livestock operations store the manure they produce in waste lagoons, or ponds. A growing number of these operations are placing floating covers on their lagoons to capture the biogas. They use it to run an engine/generator to produce electricity.

The Digestion Process

Anaerobic decomposition is a complex process. It occurs in three basic stages as the result of the activity of a variety of microorganisms. Initially, a group of microorganisms converts organic material to a form that a second group of organisms utilizes to form organic acids. Methane-producing (methanogenic) anaerobic bacteria utilize these acids and complete the decomposition process.

A variety of factors affect the rate of digestion and biogas production. The most important is temperature. Anaerobic bacteria communities can endure temperatures ranging from below freezing to above 135° Fahrenheit (F) (57.2° Centigrade [C]), but they thrive best at temperatures of about 98°F (36.7°C) (mesophilic) and 130°F (54.4°C) (thermophilic). Bacteria activity, and thus biogas production, falls off significantly between about 103° and 125°F (39.4° and 51.7°C) and gradually from 95° to 32°F (35° to 0°C).

In the thermophilic range, decomposition and biogas production occur more rapidly than in the mesophilic range. However, the process is highly sensitive to disturbances such as changes in feed materials or temperature. While all anaerobic digesters reduce the viability of weed seeds and disease-producing (pathogenic) organisms, the higher temperatures of thermophilic digestion result in more complete destruction. Although digesters operated in the mesophilic range must be larger (to accommodate a longer period of decomposition within the tank [residence time]), the process is less sensitive to upset or change in operating regimen.

To optimize the digestion process, the digester must be kept at a consistent temperature, as rapid changes will upset bacterial activity. In most areas of the United States, digestion vessels require some level of insulation and/or heating. Some installations circulate the coolant from their biogas-powered engines in or around the digester to keep it warm, while others burn part of the biogas to heat the digester. In a properly designed system, heating generally results in an increase in biogas production during colder periods. The trade-offs in maintaining optimum digester temperatures to maximize gas production while minimizing expenses are somewhat complex. Studies on digesters in the north-central areas of the country indicate that maximum net biogas production can occur in digesters maintained at temperatures as low as 72°F (22.2°C).

Other factors affect the rate and amount of biogas output. These include pH, water/solids ratio, carbon/nitrogen ratio, mixing of the digesting material, the particle size of the material being digested, and retention time. Pre-sizing and mixing of the feed material for a uniform consistency allows the bacteria to work more quickly. The pH is self-regulating in most cases. Bicarbonate of soda can be added to maintain a consistent pH, for example when too much “green” or material high in nitrogen content is added. It may be necessary to add water to the feed material if it is too dry, or if the nitrogen content is very high. A carbon/nitrogen ratio of 20/1 to 30/1 is best. Occasional mixing or agitation of the digesting material can aid the digestion process. Antibiotics in livestock feed have been known to kill the anaerobic bacteria in digesters. Complete digestion, and retention times, depend on all of the above factors.

Producing and Using Biogas

As long as proper conditions are present, anaerobic bacteria will continuously produce biogas. Minor fluctuations may occur that reflect the loading routine. Biogas can be used for heating, cooking, and to operate an internal combustion engine for mechanical and electric power. For engine applications, it may be advisable to scrub out hydrogen sulfide (a highly corrosive and toxic gas). Very large-scale systems/producers may be able to sell the gas to natural gas companies, but this may require scrubbing out the carbon dioxide.

Using the Effluent

The material drawn from the digester is called sludge, or effluent. It is rich in nutrients (ammonia, phosphorus, potassium, and more than a dozen trace elements) and is an excellent soil conditioner. It can also be used as a livestock feed additive when dried. Any toxic compounds (pesticides, etc.) that are in the digester feedstock material may become concentrated in the effluent. Therefore, it is important to test the effluent before using it on a large scale.


Anaerobic digester system costs vary widely. Systems can be put together using off-the-shelf materials. There are also a few companies that build system components. Sophisticated systems have been designed by professionals whose major focus is research, not low cost. Factors to consider when building a digester are cost, size, the local climate, and the availability and type of organic feedstock material.

In the United States, the availability of inexpensive fossil fuels has limited the use of digesters solely for biogas production. However, the waste treatment and odor reduction benefits of controlled anaerobic digestion are receiving increasing interest, especially for large-scale livestock operations such as dairies, feedlots, and slaughterhouses. Where costs are high for sewage, agricultural, or animal waste disposal, and the effluent has economic value, anaerobic digestion and biogas production can reduce overall operating costs. Biogas production for generating cost effective electricity requires manure from more than 150 large animals.

Below-ground, concrete anaerobic digesters have proven to be especially useful to agricultural communities in parts of the world such as China, where fossil fuels and electricity are expensive or unavailable. The primary purpose of these anaerobic digesters is waste (sewage) treatment and fertilizer production. Biogas production is secondary.

The most common means of collecting and storing the gas produced by a digester is with a floating cover—a weighted pontoon that floats on the liquid surface of a collection/storage basin.

Source: U.S. Department of Energy


Tags: , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: